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Abstract
We study crowdsourced PAC learning of thresh-
old function, where the labels are gathered from
a pool of annotators some of whom may behave
adversarially. This is yet a challenging problem
and until recently has computationally and query
efficient PAC learning algorithm been established
by Awasthi et al. (2017). In this paper, we show
that by leveraging the more easily acquired pair-
wise comparison queries, it is possible to exponen-
tially reduce the label complexity while retaining
the overall query complexity and runtime. Our
main algorithmic contributions are a comparison-
equipped labeling scheme that can faithfully re-
cover the true labels of a small set of instances,
and a label-efficient filtering process that in con-
junction with the small labeled set can reliably
infer the true labels of a large instance set.

1. Introduction
The recent years have witnessed an unprecedented growth
of demands in annotating large-scale data sets via crowd-
sourcing. On the empirical side, crowdsourcing has been
serving as a successful tool to harness the crowd wisdom for
annotating images (Deng et al., 2009) and natural language
(Callison-Burch & Dredze, 2010), evaluating and debugging
machine learning models (Chang et al., 2009), performing
hybrid intelligent system diagnosis (Gomes et al., 2011;
Tamuz et al., 2011), aiding our understanding in the conver-
sation between human and intelligent systems (Doshi-Velez
& Kim, 2017), to name a few (Vaughan, 2017).

Compared to the practical success, on the theoretical side,
less is known about how to learn a hypothesis class with
desired error rate from the noisy crowd annotations. This has
motivated a flurry of recent studies on improving the quality
of the annotations, such as pruning low-quality workers
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(Dekel & Shamir, 2009), adaptive task assignment (Khetan
& Oh, 2016), and self-correction (Shah & Zhou, 2016).

Orthogonal to these approaches, in this paper, we consider
the generalization ability of learning algorithms when in-
stances are annotated by the crowd. In the standard proba-
bly approximately correct (PAC) learning model of Valiant
(1984), it is assumed that there is a perfect hypothesis that
incurs zero misclassification error (also known as the real-
izable setting), and the learner is always given correctly
labeled data. In the context of crowdsourcing, the cor-
rect labels are not available but the learner has access to
a large pool of workers and can give a task to multiple
workers to aggregate the results, since some workers may
behave adversarially (Karger et al., 2011; Ho et al., 2013).
For example, the learner is allowed to query k workers
on any instance x to gather a collection of noisy labels
Y (x) := {y1(x), . . . , yk(x)} and may, for example, take
the majority vote as the final label for x. The goal is to find
a hypothesis close to the perfect one without requesting too
many crowd annotations. The crowdsourced PAC learning
model was recently put forward by Awasthi et al. (2017b),
where they showed that any hypothesis class that can be
efficiently learned in the standard PAC model can also be
efficiently learned from the crowd even facing a high level
of label noise. More importantly, it was shown that a care-
fully designed crowdsourcing algorithm collects an amount
of labels that is only within a constant multiplicative factor
of that needed in the standard PAC setting, which is called
a constant labeling overhead.

Generally speaking, the approach of Awasthi et al. (2017b)
crucially explores the wisdom of the crowd by adaptively
gathering a manageable number of labels that can be aggre-
gated into a set of correct labels, thus reducing the problem
to the standard PAC learning setting. In this work, we con-
sider the broad setting that the learner may additionally
request comparison tags of any pair of instances to reduce
the labeling cost, since in practice it is relatively easier to
compare than to label. For example, in a recommenda-
tion application, an annotator may be asked which one of
two movies she likes more; this is an easier task than to
provide an exact rating, say, from 1 to 10 (Fürnkranz &
Hüllermeier, 2010; Park et al., 2015). In general, we may
consider that there is an underlying real-valued function
f∗(x) that indicates the user’s preference to an instance x;
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the label query mathematically reads as “is f∗(x) > 0?”
and the comparison query on two instances (x, x′) reads as
“is f∗(x) > f∗(x′)?”. Such comparison-based model has
been investigated in a variety of recent works in the context
of PAC learning, aiming to mitigate the labeling cost or
even break the label complexity lower bound known for the
label-only setting; see, e.g. Kane et al. (2017); Hopkins et al.
(2020b) and the references therein for algorithms designed
under the non-crowdsourcing model.

In light of the above, our goal is to develop an efficient
crowdsourcing algorithm that: 1) returns a hypothesis with
low error rate, namely, the PAC guarantee; 2) significantly
mitigates the labeling cost through the more easily acquired
pairwise comparisons, say, an o(1) labeling overhead; and 3)
achieves overall query complexity that is of the same order
of that under the standard PAC learning model of Valiant
(1984), i.e. an overall O(1) overhead.

Simultaneously achieving the three properties is highly non-
trivial, since some natural approaches such as annotation
followed by learning would lead to overhead blowing up
with the sample size. In fact, we show that if the comparison
overhead were not constrained, i.e. for each pair to be com-
pared we can query as many workers as we want, then there
would be a simple algorithm that achieves the first two prop-
erties, under the assumption that the majority of the crowd
workers annotate according to the perfect hypothesis.1

Theorem 1 (Theorem 5, informal). Let n be the sample
size. Assume the majority of the crowd are perfect. Then any
hypothesis classH can be learned from the crowd with o(1)
labeling overhead and O(log2 n) comparison overhead as
long asH is PAC-learnable in the standard setting.

One salient feature of the above result is that the labeling
overhead becomes o(1), whereas in the label-only crowd-
sourced PAC model of Awasthi et al. (2017b) this bound
is O(1). However, we note that the comparison overhead
grows with the sample size n. Even growing logarithmi-
cally, such phenomenon is counter-intuitive and undesirable
in large-scale learning problems.

1.1. Main results: an interleaving algorithm
In this paper, we present a novel algorithm which well-
controls the comparison overhead while retaining the label
efficiency and PAC guarantee of Theorem 1.
Theorem 2 (Theorem 8, informal). There is an efficient
crowsourcing algorithm that learns H with o(1) labeling
overhead and O(1) comparison overhead provided that the
majority of the crowd are perfect.

In stark contrast to the sample-size-varying comparison
overhead of Theorem 1, the constant overhead we obtain

1We phrase all the results by assuming some workers are per-
fect; it can be easily relaxed to being reliable; see Appendix A.

here ensures that no matter what the size of data set is, the
annotation cost remains unchanged.

1.2. Overview of techniques

Our main algorithm is inspired by that of Awasthi et al.
(2017b), where the high-level idea is to utilize a celebrated
boosting framework of Schapire (1990) for interleaving an-
notation and learning. It works as follows: first, train a good
hypothesis h1 on a small set of correctly labeled instances;
second, identify and label a set of instances that h1 may
misclassify and train another good hypothesis h2; last, feed
h1 and h2 to the boosting framework to obtain a hypothesis
with the desired error rate. Our main algorithmic contribu-
tions fall into new label-efficient processes to construct the
data sets needed to train h1 and h2 by leveraging pairwise
comparisons. We highlight the new techniques below and
refer the readers to Section 4 for a detailed description.

1) Comparison-equipped labeling. The first ingredient
of our algorithm is a randomized sorting algorithm (Algo-
rithm 1) which can sort all the instances in a given set S1

with an O(|S1| · log |S1|) pairwise comparisons. It then suf-
fices to perform binary search to find a “threshold instance”
across which the labels shift, which consumes O(log |S1|)
label queries. We run this routine on a small set S1 to train
the hypothesis h1 with desired error rate while keeping a
low labeling and comparison overhead.

2) Label-efficient filtering with pairwise comparisons.
The second ingredient, also the core component of our algo-
rithm, is a label-efficient filtering process (Algorithm 4) to
identify instances that h1 may make mistakes on. We con-
struct an interval characterized by two “support instances”
x− and x+ with the properties that a) with high probability,
x− is negative and x+ is positive; b) instances outside the
interval [x−, x+] are likely to be good cases to test the per-
formance of h1, in the sense that their true labels can be in-
ferred by combining a few comparison tags from the crowd
and the label of x− or x+. To this end, given an instance
set S, we sub-sample a set U and apply the comparison-
equipped labeling to find proper support instances. The size
of U is carefully chosen, such that i) it is large enough so
that the size of the interval [x−, x+] is small and thus most
instances in S can be tested; and ii) it is not too large to
blow up the overhead. We then show that the comparison
complexity for identifying whether an instance is inside the
interval, or outside that h1 misclassifies, or outside that h1

is correct on, is low. Since there are sufficient instances
being tested, we are able to gather enough data to train h2.

2. Related Works
We discuss three research lines that are closely related to
this work. In particular, we clarify the crucial connection
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and difference from noise-tolerant PAC learning, describe
prominent crowd models and known results, as well as
recent advances in PAC learning with comparisons.

Noise-tolerant learning. In real-world applications, the la-
bels are often corrupted randomly or adversarially. To tackle
such practical challenges, a variety of label noise models
have been investigated in the literature, such as the random
classification noise (Angluin & Laird, 1987), the Massart
noise (Sloan, 1992; Massart & Nédélec, 2006), the Tsy-
bakov noise (Tsybakov, 2004), and the agnostic/adversarial
noise (Haussler, 1992; Kearns et al., 1992). It is, however,
known that without distributional or large-margin assump-
tions on the instances, learning even the fundamental class of
linear threshold functions is computationally hard (Feldman
et al., 2006; Guruswami & Raghavendra, 2006; Diakoniko-
las & Kane, 2020). The only noise model that allows effi-
cient and (almost) assumption-free algorithms is the random
classification noise (Blum et al., 1996), yet it is recognized
to be of little practical interest. Under distributional assump-
tions, a fruitful set of efficient PAC algorithms have been
established, typically for the class of linear threshold func-
tions; see, e.g. Kalai et al. (2005); Awasthi et al. (2017a);
Zhang et al. (2020); Diakonikolas et al. (2020; 2021); Shen
& Zhang (2021); Shen (2021a;b); Zhang & Li (2021) and
the references therein. Notably, all these works approach
the problem of learning linear threshold functions under the
non-crowdsourcing scenario: for any given x, no matter how
many times the learner queries its label, the obtained label is
persistent even with noise. Orthogonal to these developed al-
gorithms, we study the problem in the crowdsourcing setting
and show that annotation aggregation enables a design of
powerful PAC algorithms in the sense that our performance
guarantee holds for general threshold functions without dis-
tributional assumptions on the instances (though we do need
mild conditions on the crowd).

Learning from the crowd. Unlike traditional learning set-
tings, a crowdsourced learner always has access to a large
pool of workers who can provide annotations for a given
instance. The noise in crowd mainly comes from the imper-
fectness of the workers. There are several types of crowd
models considered in the literature. For example, one funda-
mental model assumes that a certain fraction of the workers
are perfect, i.e. always labeling according to the true hypoth-
esis, and the remaining could behave adversarially (Karger
et al., 2011; Awasthi et al., 2017b), sometimes called the
hammer-spammer model. Other works, such as Welinder
et al. (2010); Ho et al. (2013); Khetan & Oh (2016), studied
a more general crowd model where no perfect labeler exists,
and the probability that a worker makes mistake depends on
the given instance. The trouble of the latter model is that the
annotators are too powerful and the algorithms had to either
require golden labels (Ho et al., 2013), or only showed weak
guarantee that as the sample size n goes to infinity, the mis-

classification error is small on average (Karger et al., 2011;
Khetan & Oh, 2016); this could be vacuous since it is possi-
ble that the label of

√
n instances can be entirely incorrect.

To the best of our knowledge, the only known algorithm that
offers PAC guarantee is due to Awasthi et al. (2017b) under
the fundamental crowd model (and a Massart-noise model).

Learning with comparisons. Pairwise comparisons have
been widely applied in practical problems such as pref-
erence learning in recommender systems (Fürnkranz &
Hüllermeier, 2010; Park et al., 2015; Xu & Davenport, 2020)
and ranking (Jamieson & Nowak, 2011; Heckel et al., 2019;
Pananjady et al., 2020; Shah et al., 2019). More in line
with this work is learning threshold functions with pairwise
comparisons (Kane et al., 2017; Xu et al., 2017; Hopkins
et al., 2020a;b), though these works are based on the non-
crowdsourcing setting. The main finding is that it is possible
to break the label complexity lower bound of label-only
learning algorithms while still achieving PAC guarantees.
We show similar phenomenon for crowdsourced PAC learn-
ing but will incorporate the comparison queries in a quite
different way.

3. Preliminaries
We study the problem of learning threshold functions, with
access to both labels and pairwise comparison tags from
the crowd. Let X be the instance space, and Y := {−1, 1}
be the label space. Let D be the joint distribution over
X × Y , and denote by DX the marginal distribution over
X . Let F := {f : X → R} be the class of real-valued
functions. The class of threshold functions is given by
H := {h : x 7→ sign (f(x)) , f ∈ F}. For example,
when F = {fw : x 7→ w · x}, the hypothesis class H
is the class of halfspaces (also known as linear threshold
functions). We focus on the classical realizable setting
of Valiant (1984) where there exists a perfect hypothesis
h∗ ∈ H that incurs zero error, i.e. for any (x, y) drawn from
D, y = h∗(x). For any hypothesis h : X → Y , its error
rate is defined as errDX (h) := Prx∼DX (h(x) 6= h∗(x)).
Let f∗ ∈ F be the real-valued function associated with the
perfect classifier h∗. For any pair of instances (x, x′) ∈
X × X , the underlying comparison function is thus given
by Z∗(x, x′) = sign (f∗(x)− f∗(x′)). For the purpose of
presentation transparency, for a given comparison function
Z(·, ·), we will often write x >Z x′ and x <Z x′ in place
of Z(x, x′) = 1 and Z(x, x′) = −1 respectively. When the
function Z is clear from the context, we omit the subscript
and just write x > x′ or x < x′.

Standard PAC learning. The terminology “standard PAC
learning” is reserved for the setting of Valiant (1984), that is,
there exists a perfect hypothesis h∗ with zero error rate, and
the learner is always given correctly labeled data (x, h∗(x))
where x ∼ DX . We are interested in the classesH that are
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efficiently learnable in the standard PAC learning model.

Assumption 3. There exists an efficient algorithm AH
which takes as input a target error rate ε ∈ (0, 1), confi-
dence δ ∈ (0, 1), a set of mε,δ correctly labeled instances S
randomly drawn from D, and returns a hypothesis h such
that, with probability at least 1− δ, errDX (h) ≤ ε. We call
AH a standard PAC learner.

For example, when H is the class of halfspaces, a linear
program that fits the training data is also a standard PAC
learner (Maass & Turán, 1994). Note that in Assumption 3,
we did not impose distributional assumptions on DX .

The quantity mε,δ in Assumption 3 characterizes the query
complexity of AH. In view of the classic result (Kearns &
Vazirani, 1994), it suffices to pick

mε,δ = K · 1

ε

(
d log

1

ε
+ log

1

δ

)
, (3.1)

where d is the Vapnik–Chervonenkis dimension of the hy-
pothesis classH and K > 1 is some absolute constant2. We
reserve mε,δ for the above expression. In our analysis, we
will also need the following quantity

nε,δ := K · 1

ε

(
d log

1

ε
+
(3

δ

) 1
1000
)
, (3.2)

which will characterize the query complexity of a
comparison-equipped algorithm. The additive term ( 3

δ )
1

1000

is due to the fact that the failure probability of the sorting
algorithm, specifically the randomized Quicksort algorithm
we will use, only decays to zero in a rate inversely polyno-
mial in the sample size. If there were sorting algorithms
with failure probability decaying exponentially fast with the
sample size, we would be able to choose nε,δ = mε,δ . Note
also that there is nothing special on the exponent 1

1000 of
1
δ : it can be made to be a constant arbitrarily close to 0 with
the cost of increasing the comparison complexity with a
constant multiplicative factor (see, e.g. Lemma 32).

Crowdsourced PAC learning. Let PL be the uniform
distribution over the pool of crowd workers who provide
labels, and PC be the uniform distribution of those pro-
viding comparisons. In the context of crowdsourcing, the
learner does not have access to the correct labels but has
instances randomly drawn from DX , and it is allowed to
query a worker t ∼ PL on the label of an instance, or
worker t′ ∼ PC on the comparison tag of two instances.
For a given input (either a single instance or a pair), by
querying multiple workers, it is possible to collect a set of
different (noisy) annotations to aggregate (say, via majority
voting). We say a crowdsourcing algorithm PAC learnsH

2For proper learning of Boolean-valued functions, there is a
lower bound on the sample complexity that matches Eq. (3.1); see
the discussion in Hanneke (2019).

if for any given ε, δ ∈ (0, 1), by drawing mS instances and
collecting mL labels and mC comparison tags, it outputs a
hypothesis h : X → Y such that with probability at least
1 − δ, errDX (h) ≤ ε. We call mL the label complexity,
and mC the comparison complexity. The query complexity
refers to the sum of mL and mC . The labeling overhead
and comparison overhead are respectively defined as

ΛL :=
mL

mε,δ
and ΛC :=

mC

mε,δ
, (3.3)

which characterize how the query complexity of a crowd-
sourced PAC learner compares to that of a standard PAC
learner AH. We say a crowdsourced PAC learner is query
efficient if ΛL + ΛC = O(1); if additionally ΛL = o(1),
we say the learner is label efficient.

Crowd model. We consider the following fundamental
model for the crowd: there exists a large pool of crowd
workers, at least 1

2 + α fraction of whom are perfect that
always return correct labels (i.e. they label according to h∗),
while the other 1

2 − α fraction may perform adversarially.
In other words, for a given instance, each time the learner
queries a randomly chosen worker on its label, the obtained
label is correct with probability at least 1

2 +α. Likewise, we
assume that 1

2 + β fraction of the workers are perfect when
providing the comparison tag. Throughout the paper, we
assume that α ∈ (0, 1

2 ] and β ∈ (0, 1
2 ], which ensures the

correctness of the majority. It is worth mentioning that all
of our analysis essentially holds for a much stronger noise
model where the perfect workers can be replaced by reliable
workers; we defer such extension to Appendix A.

Given a set of annotations A = {a1, . . . , an} (either the la-
bels or comparison tags), we define Maj(A) as the outcome
of majority voting. Specifically, suppose h1, h2 and h3 are
three classifiers in H. The function Maj(h1, h2, h3) maps
any instance x to a label y, which is the outcome of the ma-
jority vote of h1(x), h2(x) and h3(x). Let Z1, . . . , Zt be t
comparison functions. We denote the set of the comparison
tags given by them on a pair (x, x′) by Z1:t(x, x

′), namely,
Z1:t(x, x

′) = {Z1(x, x′), . . . , Zt(x, x
′)}.

We will use Õ(f) to denote O(f · polylog(f)), use Ω̃(f) to
denote Ω(f/polylog(f)), and use Θ̃(f) to denote a quan-
tity that is between them. The notation Oδ(f) means we
treat the parameter δ as a constant, which will be useful to
simplify our discussion on the overhead.

3.1. A natural approach and the limitation

In order to utilize the comparison queries, we consider a nat-
ural primitive of “compare and label” (Ailon & Mohri, 2008;
Xu et al., 2017). The idea is to use pairwise comparisons
along with the well-known RANDOMIZED QUICKSORT to
sort all the instances. It then remains to perform binary
search of a threshold instance across which labels shift from
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Algorithm 1 COMPARE-AND-LABEL

Require: A set of instances S = {xi}ni=1, confidence δ.
Ensure: A labeled set S.

1: k1 ← 1
2β2 · log 3006|S| log|S|

δ and k2 ← 1
2α2 · log 3 log|S|

δ .
2: Apply RANDOMIZED QUICKSORT on S: for each pair

(x, x′) being compared, query k1 workers and take the
majority. Let Ŝ = (x̂1, x̂2, . . . , x̂n) be the sorted list.

3: tmin ← 1, tmax ← n.
4: while tmin < tmax do
5: t← (tmin + tmax)/2.
6: Query k2 workers to obtain their labels on x̂t, and let

ŷt be the majority vote.
7: If ŷt = 1 then tmax ← t− 1; else tmin ← t+ 1.
8: end while
9: For all t′ ≥ t, ŷt′ ← 1; for all t′ < t, ŷt′ ← −1.

return S ← {(x̂1, ŷ1), (x̂2, ŷ2), . . . , (x̂n, ŷn)}.

−1 to 1; this step is label-efficient.

The success of the above approach hinges on the correctness
of the comparison tags and labels. To this end, for each
input, the crowdsourcing algorithm may aggregate the an-
notations from multiple workers in order to ensure that the
majority vote is correct with high probability. The details of
COMPARE-AND-LABEL are presented in Algorithm 1.

Proposition 4. Consider the COMPARE-AND-LABEL al-
gorithm. If |S| ≥ ( 3

δ )1/1000, then with probability at least
1 − δ, it correctly sorts and labels all the instances in S.
The label complexity is O

(
1
α2 · log |S| · log log |S|

)
, and the

comparison complexity is given by O
(

1
β2 · |S| · log2 |S|

)
.

Equipped with the labeled set, it is straightforward to learn
a classifier using the standard PAC learner AH as follows,
where we recall that nε,δ was defined in (3.2).

Natural Approach: Draw a set S of size nε,δ
fromDX . Let S ← COMPARE-AND-LABEL(S).
Return AH(S, ε, δ).

We have the following performance guarantee.

Theorem 5 (Natural approach). With probability at least
1 − δ, the natural approach runs in time poly(d, 1

ε ) and
returns a classifier h with error rate errDX (h) ≤ ε. The
label complexity is O

(
1
α2 · log nε,δ · log log nε,δ

)
and the

comparison complexity is O
(

1
β2 · nε,δ · log2 nε,δ

)
. More-

over, the labeling overhead ΛL = 1
α2 · Õ

( log(d/ε)
d/ε

)
and the

comparison overhead ΛC = Oδ
(

1
β2 · log2 nε,δ

)
.

Remark 6 (Label complexity and labeling overhead).
Awasthi et al. (2017b) considered label-only crowdsourced
PAC learning and obtained a label complexity bound of
O(m√ε,δ logm√ε,δ +mε,δ) and a labeling overhead Λ′L =

O(
√
ε log

mε,δ
δ + 1) = Õδ

(√
ε log(d/ε) + 1

)
under the con-

dition that α ≥ Ω(1). First, observe that our label complex-
ity scales as log(d/ε), while theirs is proportional to d/ε
which is exponentially worse. Second, in terms of labeling
overhead, our results show that it tends to zero as ε/d goes
to zero, while their labeling overhead stays as a non-zero
constant: this is precisely what we mean by o(1) labeling
overhead in Theorem 1.

However, we observe that the comparison overhead ΛC
grows with the sample size. This is undesirable because
when we demand a small error rate ε, the sample size will
increase and hence the comparison cost per pair.

4. Main Algorithm and Performance
Guarantee

The natural approach separates learning and annotation by
first labeling all the data and then training a classifier. In
this section, we present a more involved algorithm that
interleaves learning and annotation to achieve constant com-
parison overhead. Inspired by the work of Awasthi et al.
(2017b), we will use the celebrated boosting algorithm of
Schapire (1990) as the starting point.

Theorem 7 (Boosting). For any p < 1
2 and distribution

DX , consider three classifiers h1(x), h2(x), h3(x) satisfy-
ing the following. 1) errDX (h1) ≤ p; 2) errD2(h2) ≤ p
whereD2 := 1

2DC+ 1
2DI ,DC denotes the distributionDX

conditioned on {x : h1(x) = h∗(x)}, and DI denotes DX

conditioned on {x : h1(x) 6= h∗(x)}; 3) errD3
(h3) ≤ p

where D3 is DX conditioned on {x : h1(x) 6= h2(x)}.
Then errDX (Maj(h1, h2, h3)) ≤ 3p2 − 2p3.

There are two salient features that we will exploit from the
theorem. First, the theorem implies that in order to learn a
hypothesis with a target error rate ε ∈ (0, 1), it suffices to
learn three weak hypotheses each of which has error rate
less than p =

√
ε

2 . Second, the framework is fairly flexible
in the sense that one can apply any algorithm to obtain
the three nontrivial hypotheses, as long as it enjoys PAC
guarantee in the distribution-independent regime. In view
of Assumption 3, it suffices to gather m√ε/2,δ/3 correctly
labeled instances from DX , D2 and D3 respectively and
invoke the standard PAC learner AH. Our main algorithm,
Algorithm 2, is designed in such a way that such an amount
of high-quality labels are gathered without suffering an
overwhelming query complexity (or, overhead).

Our main theoretical results are as follows.

Theorem 8 (Main results). Consider Algorithm 2. As-
sume β ≥ c0 for some absolute constant c0 ∈ (0, 1/2].
For any ε, δ ∈ (0, 1), with probability at least 1 − δ, it
runs in time poly(d, 1

ε ) and returns a classifier ĥ such that

errDX (ĥ) ≤ ε. The label complexity is 1
α2 · Õ

(
log

d+ 1
δ

ε

)
,
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and the comparison complexity is Õ
(d+(1/δ)

1
1000

ε

)
. More-

over, the labeling overhead is 1
α2 · εd · Õ

(
log d

ε

)
, and the

comparison overhead is Oδ
(√
ε · log2 d

ε + 1
)
.

Remark 9. The label complexity and labeling overhead are
similar to what we obtained in Theorem 5, hence inheriting
all the improvements over Awasthi et al. (2017b) as we
described in Remark 6.
Remark 10. A crucial message of the main theorem is that
the comparison overhead can now be upper bounded by a
constant; this occurs when ε is sufficiently small relative
to the VC dimension d, i.e. ε ≤ (log d)−4. This is a mild
condition since given a learning problem, the hypothesis
class will be fixed and hence is the VC dimension d. There-
fore, in the most interesting regime that ε is close to zero,
i.e. ε ∈ (0, (log d)−4), our algorithm PAC learns H with
o( 1
α2 ) labeling overhead and Oδ(1) comparison overhead.

Here, we use o( 1
α2 ) to emphasize that the labeling overhead

may decay to zero as ε tends to zero. It is easy to see that
if α is also lower bounded by some absolute constant, then
the labeling overhead reads as o(1).
Remark 11. Our results demonstrate a useful tradeoff be-
tween the complexity of the two query types: though the
overall query complexity is comparable to that of Awasthi
et al. (2017b), our algorithm needs drastically fewer labels.
This is especially useful for label-demanding applications
such as what we introduced in Section 1. One interesting
question is the possibility to simultaneously reduce the la-
bel and overall query complexity. Unfortunately, there is
evidence showing that this is in general impossible, though
under the non-crowdsourcing setting; see e.g. Theorem 4.11
of Kane et al. (2017) and Theorem 11 of Xu et al. (2017).
Remark 12. Observe that in our definition of the overheads
(see Eq. (3.3)), we compare the query complexity to that
of a standard PAC learner that uses only labels. Hence,
the notion of overheads highlights the savings of labels
with pairwise comparisons. Another natural way to de-
fine the overheads is to compare the query complexity of
a crowdsourcing algorithm to that of a non-crowdsourcing
one which uses both labels and pairwise comparisons. This,
however, appears subtle since it is unclear how the query
complexity scales under the distribution-free setting. For
example, combining Theorem 4.11 and Corollary 4.12 of
Kane et al. (2017) results in a query complexity lower bound
of Ω

(
d+ 1

ε

)
, yet its sharpness is open. We remark that if the

query complexity were Θ
(
d+ 1

ε

)
, our main results would

still follow for fixed VC dimension d. See Remark 31 in
Appendix F for more details.

In the following, we elaborate on the design of the main al-
gorithm, along with the performance guarantees. To reduce
clutter, we omit the confidence parameter δ in the discussion
and write nε := nε,δ; it will be more convenient for the read-
ers to further think of this quantity as being roughly Θ( 1

ε ).

Algorithm 2 Main Algorithm
Require: Hypothesis class H, target error rate ε, confi-

dence δ, a standard PAC learner AH.
Ensure: A hypothesis ĥ : X → Y .

Phase 1:
1: S1 ← COMPARE-AND-LABEL(S1, δ/6), for an in-

stance set S1 of size n√ε/2,δ/6 from DX .

2: h′1 ← AH(S1,
√
ε

2 ,
δ
6 ).

3: h1 ← ANTI-ANTI-CONCENTRATE(h′1,
√
ε

2 ,
1
2 ).

Phase 2:
4: SI ← FILTER(S2, h1, δ/12), for an instance set S2 of

size Θ(nε,δ/12) drawn from DX .
5: SC ← draw Θ(n√ε,δ/12) instances from DX .
6: SAll ← COMPARE-AND-LABEL(SI ∪ SC , δ/12).
7: WI ← {(x, y) ∈ SAll : y 6= h1(x)}, WC ← SAll\WI .
8: Draw a sample set W of size n√ε/2,δ/12 from a distri-

bution that equally weights WI and WC .
9: h2 ← AH(W,

√
ε

2 ,
δ
12 ).

Phase 3:
10: S3 ← COMPARE-AND-LABEL(S3, δ/6), for an in-

stance set S3 of size n√ε/2,δ/6 from DX conditioned
on h1(x) 6= h2(x).

11: h3 ← AH(S3,
√
ε

2 ,
δ
6 ).

return ĥ← Maj(h1, h2, h3).

The precise form of nε,δ (defined in Eq. (3.2)) and the con-
crete choices of the confidence parameter will appear in the
statements of all theorems and algorithms. It will also be
useful to keep in mind that feeding COMPARE-AND-LABEL
with a set of size nε would lead to comparison overhead
growing with the sample size, but a set of size n√ε would
not since in this case the comparison complexity is Õ( 1√

ε
)

(see Theorem 5) because mε,δ = Θ̃( 1
ε ).

4.1. Analysis of Phase 1

In Phase 1, we aim to learn a nontrivial classifier h1 with er-
ror rate at most

√
ε

2 on DX . This can easily be fulfilled since
DX is available to the learner. In fact, this phase is very
similar to the natural approach, except for the number of in-
stances being used: here we draw n√ε/2 = Θ̃( 1√

ε
) samples

from DX and feed them to COMPARE-AND-LABEL, result-
ing in a nontrivial hypothesis h′1 with errDX (h′1) ≤

√
ε

2 and
an O(1) comparison overhead.

We then invoke ANTI-ANTI-CONCENTRATE (Algorithm 3)
to prevent the performance of h′1 from being too good. In
particular, the new classifier h1 is constructed in such a
way that most of the time, it predicts as h′1 does but with
a small chance, it predicts as −h′1. This would make sure
that errDX (h1) = Θ(

√
ε). While this step seems counter-

intuitive, it is inherently important for our algorithm, es-
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Algorithm 3 ANTI-ANTI-CONCENTRATE

Require: A classifier h′, a quantity η ≤ 1 such that
errDX (h′) ≤ η, an absolute constant c ≤ 1 with η ≤ c.

Ensure: A classifier h with errDX (h) ∈
[
c1η, c2η

]
where

c1 = min
{

1
2 ,

1−c
2−c
}

, c2 = max
{

1, c+ 1
2

}
.

1: Pick bias λ ∈ [0, 1] such that (1− λ)(1− 1
2η) = 1

2η.
2: Let h be as follows: for any given x, independently toss

a coin; if outcome is HEADS (which happens with prob-
ability λ), then h(x)← h′(x), else h(x)← −h′(x).
return h.

pecially for Phase 2. Indeed, the construction of D2 in
Theorem 7 relies on the conditional distribution DI , consist-
ing of instances from DX that h1 misclassifies. Since the
probability density of DI is exactly the error rate of h1 on
DX , in order to draw, say, n instances from DI , we would
have to sample at least n/errDX (h1) data from DX in view
of the Chernoff bound. Therefore, if the error rate of h1

were not bounded from below, the number of samples to
be drawn from DX would be unbounded as well. One may
question that if h′1 is very good, say in reality we already
have errDX (h′1) ≤ ε, then why not terminating Algorithm 2
and just return h′1. The trouble here is that we cannot test
its error rate, because the correct labels are not available.
In fact, by the Chernoff bound, it is not hard to see that
we would have to obtain Θ̃(1/errDX (h′1)) correctly labeled
instances from DX to guarantee that the empirical error rate
of h′1 equals Θ(errDX (h′1)), but a) the quantity errDX (h′1)
is unknown, and b) acquiring such amount of correct labels
would lead to overwhelming overhead (once errDX (h′1) = ε
this is exactly the amount needed by the natural approach).

We summarize the performance guarantee of Phase 1 below.

Proposition 13. In Phase 1, with probability 1 − δ
3 ,

errDX (h1) ∈
[√ε

6 ,
√
ε

2

]
. The label complexity is O

(
1
α2 ·

log n√ε,δ · log log n√ε,δ
)

and the comparison complexity is
O
(

1
β2 · n√ε,δ · log2 n√ε,δ

)
.

4.2. Analysis of Phase 2

Phase 2 aims to obtain instances obeying the distributionD2

as defined in Theorem 7. To this end, we need to find a set SI
of Θ(n√ε) instances that h1 will misclassify, and Θ(n√ε)
instances that h1 will predict correctly. It then suffices to call
the standard PAC learner AH to learn h2. As we discussed
in the preceding section, in order to guarantee the existence
of SI with such size, we have to draw a set S2 of Θ(nε)
instances from DX . In order to identify them, we have to
design a computationally efficient algorithm. We remind
that, with Θ(nε) instances in S2, we could not directly
apply COMPARE-AND-LABEL on S2 to identify SI since it
would lead to an undesirable overhead similar to that of the
natural approach. We tackle this challenge by designing a

Algorithm 4 FILTER

Require: An instance set S, classifier h with errDX (h) ∈[√ε
6 ,
√
ε

2

]
, confidence δ.

Ensure: A set SI whose instances are misclassified by h.
1: b← 4√

ε
log 16

δ + ( 24
δ )1/1000.

2: Sample uniformly a subset U ⊂ S of b instances.
3: U ← COMPARE-AND-LABEL(U, δ/3). Let x− be the

rightmost instance of those labeled as −1, and x+ be
the leftmost instance of those labeled as +1.

4: SI ← ∅, Sin ← ∅, N ← 1
β2 log 1

ε .
5: for x ∈ S\U do
6: ANS← YES.
7: for t = 1, . . . , N do
8: Draw a worker t ∼ PC to obtain the comparison

tag Zt(x, x−). If Zt(x, x−) = {x < x−}, then
Zt(x, x

+)← {x < x+}, else query Zt(x, x+).
9: If t is even, then continue to the next iteration.

10: Filtering: If
[
Maj(Z1:t(x, x

−)) = {x < x−} and
h(x) = −1

]
or
[
Maj(Z1:t(x, x

+)) = {x > x+}
and h(x) = 1

]
, then ANS← NO and exit loop.

11: end for
12: If Maj

(
Z1:N (x, x−)

)
= {x > x−} and

Maj
(
Z1:N (x, x+)

)
= {x < x+} then ANS← NO

and Sin ← Sin ∪ {x}.
13: If ANS = YES, then SI ← SI ∪ {x}.
14: end for
15: Sin ← COMPARE-AND-LABEL(Sin, δ/3).
16: SI ← SI ∪ {x : (x, y) ∈ U ∪ Sin and y 6= h(x)}.

return SI .

novel algorithm termed FILTER (Algorithm 4). On the other
hand, obtaining SC is relatively easy: since the error rate
of h1 is upper bounded by

√
ε

2 , it makes correct prediction
on most of the instances. Therefore, it suffices to draw
Θ(n√ε) samples fromDX and call COMPARE-AND-LABEL
to obtain the correct label of all these data, which can be
used to test the performance of h1. By the Chernoff bound, it
is guaranteed that we can find at least (1−

√
ε

2 )n√ε ≥ 1
2n
√
ε

such instances to form SC . In the following, we elaborate
on the design of the FILTER algorithm, which is the key
technical contribution of the paper.

From now on, we switch to the notation in Algorithm 4.
The principle of FILTER is to utilize a modest amount of
comparisons and a small amount of label queries to infer the
correct label of a vast fraction of the instances of S (i.e. the
set S2 in Algorithm 2). To aid intuition, imagine that all the
instances in S are ordered by the true comparison function
Z∗(·, ·) and then mapped into the interval [0, 1] on the real
line. There are two major stages in FILTER: a sub-sampling
stage to obtain U and a filtering stage to obtain SI .

In the sub-sampling stage, we uniformly sample a setU ⊂ S
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and invoke the COMPARE-AND-LABEL algorithm to obtain
a correctly sorted and labeled set U , enabling us to find two
support instances x− and x+. Roughly speaking, x− is the
negative instance that is “closest” to positive instances in U ,
and x+ is the positive instance that is “closest” to negative.
One important consequence of this step is that the label of
the instances outside the interval [x−, x+] can be inferred
provided that we have truthful comparison tags. On the
other hand, we are uncertain about the label of those inside
the interval. Since our objective is to collect a sufficient
number of instances to form SI , we need to constrain the
size of the points residing in the interval. While it seems
that a constant length (i.e. it contains a constant fraction
of points in S) suffices, we will show that it needs to be
as small as

√
ε

4 – this will be clarified when we explain the
comparison complexity of the filtering step. Observe that
such narrow interval can be guaranteed when the size of U
is as large as 4√

ε
log 16

δ ; see Lemma 24 in Appendix D.

The filtering stage is devoted to identifying good cases to
test the performance of h. In particular, we hope to find
instances whose true label can be inferred from a few noisy
comparison tags, which can then be compared to the label
predicted by h. In view of the availability of the support
instances x− and x+, it suffices to gather comparison tags
for (x, x−) and (x, x+) for all x ∈ S\U . When x resides in
the interval, we store it in Sin and invoke COMPARE-AND-
LABEL on Sin after all instances in S\U have been visited.
This step is query-efficient since U is constructed in such a
way that |Sin| ≤ O(

√
ε |S|) = O(n√ε).

For those outside the interval, we think of them as good
cases to test h. This is because Proposition 4 guarantees
that U will be annotated correctly with high probability and
hence, instances left to x− are likely to be negative (like-
wise instances right to x+ are likely to be positive). In other
words, the labels of x− and x+ together with the compari-
son model we considered (see Section 3) would help infer
the label of the instances outside the interval; these inferred
labels will then be contrasted to the predictions made by
h. Indeed, Step 10 of FILTER is exactly testing the match-
ing between the inferred label and the predicted label from
h. Such procedure would truthfully identify SI provided
that the comparison to the support instances returned by
the crowd has good quality. In this regard, each instance
x will be assigned to multiple workers, and the underly-
ing question is how many times are sufficient to justify the
correctness of h(x). A straightforward approach is to ac-
quiring N = O( 1

β2 log |S|δ ) comparison tags per instance x
to guarantee that the majority votes Maj(Z1:N (x, x−)) and
Maj(Z1:N (x, x+)) are correct for all x ∈ S with high prob-
ability. This, however, leads to a comparison complexity
bound of O(|S| log |S|) = O(nε log nε), which is compara-
ble to the natural approach. In our algorithm, we explore the

structure of the crowd and the error rate of the learned clas-
sifier to reduce it to O(|S|) = O(nε). In particular, since
errDX (h) = Θ(

√
ε), the classifier essentially performs well

on most of the data in S. Therefore, if there is one time
stamp t such that the inferred label matches the predicted la-
bel from h, then it implies that h is correct on such instance
x with high probability. On the other hand, if after N steps,
the algorithm never found any group of workers whose ma-
jority vote combined with the label of x− and x+ agrees
with the predicted label from h, then this is strong evidence
that h misclassifies the current instance. Now we are in the
position to spell out how to obtain the Õ(n√ε) comparison
complexity. For those x that h classifies correctly, it follows
that the algorithm will run only a few steps to find a group
of workers whose comparison tags in allusion to the label
of the support instances would agree with h. In fact, we
show that for any such x, the number of comparison queries
stays as a constant provided that β ≥ Ω(1), say, 70% of
the workers are perfect when providing comparison tags.
Since all of such x consist of 1 −

√
ε

2 fraction of S (recall
that errDX (h) ≤

√
ε

2 ), the comparison complexity isO(|S|).
For those x that h misclassifies, the algorithm will need N
comparison queries; since they consist of

√
ε

2 fraction, we
need a total of O(

√
ε |S|N) comparison queries. Lastly, for

those inside the interval, the algorithm also runs N steps;
yet, as the sub-sampling stage guarantees that the fraction is
O(
√
ε), it ends up with O(

√
ε |S|N) comparisons as well.

We summarize the performance guarantee of FILTER below.

Lemma 14. Consider the FILTER algorithm. Assume that
U is correctly labeled and β ≥ c0 for some absolute con-
stant c0 ∈ (0, 1/2]. Consider any given instance x ∈ S
outside the interval [x−, x+]. If h(x) = h∗(x), it will be
added to SI with probability at most 1

4

√
ε; if h(x) 6= h∗(x),

it goes to SI with probability at least 4c0
1+2c0

. For any in-
stance x ∈ S that falls into the interval [x−, x+], it will be
added to SI with probability at most 1

4

√
ε.

Proposition 15. Consider the FILTER algorithm with |S| =
Θ(nε,δ). Assume β ≥ c0 for some absolute constant
c0 ∈ (0, 1/2]. Then, with probability at least 1− δ, the al-
gorithm returns an instance set SI with size Θ(n√ε,δ). The
label complexity is O

(
1
α2 · log n√ε,δ · log log n√ε,δ

)
, and

the comparison complexity is O
(
n√ε,δ · log2 n√ε,δ + nε,δ

)
.

These observations together lead to the following perfor-
mance guarantee of Phase 2 in Algorithm 2. Readers may
refer to Appendix D for a detailed proof.

Proposition 16. Assume β ≥ c0 for some absolute con-
stant c0 ∈ (0, 1/2]. In Phase 2, with probability 1 − δ

3 ,
errD2

(h2) ≤
√
ε

2 . The label complexity isO
(

1
α2 · log n√ε,δ ·

log log n√ε,δ
)
, and the comparison complexity is O

(
n√ε,δ ·

log2 n√ε,δ + nε,δ
)
.
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4.3. Analysis of Phase 3

Given the hypotheses h1 and h2, we can draw instances
from the disagreement region via rejection sampling.

Proposition 17. In Phase 3, with probability 1 − δ
3 ,

errD3
(h3) ≤

√
ε

2 . In addition, the label complexity is
O
(

1
α2 · log n√ε,δ · log log n√ε,δ

)
and the comparison com-

plexity is O
(

1
β2 · n√ε,δ · log2 n√ε,δ

)
.

Observe that now Theorem 8 follows from Propositions 13,
16, 17, and Theorem 7; see Appendix F for the full proof.

5. Conclusion
We have shown that for any class of threshold functions
that is efficiently PAC learnable under the standard setting,
it is possible to efficiently learn it from the noisy crowd
annotations, with an o(1) labeling overhead and O(1) com-
parison overhead. To this end, we have developed a set of
new techniques, including a comparison-equipped labeling
primitive and a label-efficient filtering process. It would be
interesting to study agnostic crowdsourced PAC learning, or
to study other query types (Balcan & Hanneke, 2012).
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A. From Perfect Workers to Reliable Workers
Crowd model with perfect workers. All of the theoretical results in this paper are established based on the existence of
perfect workers: ( 1

2 + α) fraction of the pool of workers are perfect when providing labels, in the sense that they always
label according to the perfect hypothesis h∗, while the remaining ( 1

2 − α) may behave adversarially. Likewise, ( 1
2 + β)

fraction always provide comparison tags according to Z∗ and the remaining ( 1
2 − β) may behave adversarially.

In this section, we show that it is easy to relax the requirement of perfectness to reliability.

Definition 18 (Reliable worker). A reliable worker t who provides labels is defined by a function gt : X → Y satisfying
the following condition: given any instance x ∼ DX ,

Pr
(
gt(x) = h∗(x)

)
≥ 1− ηt(x), (A.1)

where the function ηt(x) ∈ [0, ηL] for some given parameter ηL < 1/2. Likewise, a reliable worker t′ who provides
comparison tags is defined by a function g′t : X × X → {−1, 1} satisfying the following condition: given any pair of
instances (x, x′),

Pr
(
g′t(x, x) = Z∗(x, x′)

)
≥ 1− η′t(x, x′), (A.2)

where the function η′t(x, x
′) ∈ [0, ηC ] for some given parameter ηC < 1/2.

Note that the function ηt(x) (likewise for η′t(x, x
′)), namely the probability that a worker t will flip a given instance, may

vary across workers and instances, and the only restriction is that the flipping probabilities are upper bounded by a parameter
η < 1/2; thus this is a very flexible and strong noise model. In fact, such noise model is exactly the Massart noise (Sloan,
1988; Massart & Nédélec, 2006) which has been broadly studied in the literature under the non-crowdsourcing setting and
only until recently have polynomial-time algorithms been established under distributional assumptions (Zhang et al., 2020;
Diakonikolas et al., 2020); in addition, under the non-crowdsourcing setting, there is evidence that efficient learning with
Massart noise without distributional assumptions is computationally hard (Diakonikolas & Kane, 2020).

Crowd model with reliable workers. We consider the following crowd model: 1
2 + α′ fraction of the workers are reliable

while the remaining 1
2 − α

′ are adversarial for label queries. Likewise, 1
2 + β′ are reliable while the remaining 1

2 − β
′ are

adversarial for comparison queries.

We show that all of our analysis based on the perfect version can be easily extended to the reliable version.3 To simplify the
discussion, we show how to do so for workers that provide labels; the case of comparison queries follows exactly the same
reasoning.

Indeed, all of our analysis uses the following fact from the perfect version of crowd: for any given instance x, by querying a
randomly chosen worker, we are able to obtain the correct label with probability at least 1

2 + α, namely

Pr
t∼PL

(
ht(x) = h∗(x)

)
≥ 1

2
+ α, (A.3)

where we recall that PL is the uniform distribution over the pool of workers that provide labels.

Now we can consider that the perfect workers are replaced with reliable workers, and it suffices to establish a condition
similar to (A.3).

Given any instance x ∼ DX , we have

Pr
t∼PL

(
gt(x) = h∗(x)

)
≥ Pr
t∼P

(
gt(x) = h∗(x), t is reliable

)
= Pr
t∼P

(
gt(x) = h∗(x) | t is reliable

)
· Pr
t∼P

(
t is reliable

)
≥
(
1− ηt(x)

)
·
(1

2
+ α′

)
≥ (1− η) ·

(1

2
+ α′

)
=

1

2
+
[
(1− η) ·

(1

2
+ α′

)
− 1

2

]
.

3The analysis of Awasthi et al. (2017b) for α > 0 holds for the reliable version of crowd model as well.
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Therefore, under the reliable version of the crowd model, all of our analysis holds but with a new parameter α =
(1− η) ·

(
1
2 +α′

)
− 1

2 , where the parameters η ∈ [0, 1/2) and α′ ∈ (0, 1/2] are such that (1− η) ·
(

1
2 +α′

)
− 1

2 ∈ (0, 1/2].

Similarly, the assumption that 1
2 + β fraction of workers are perfect when providing comparison tags can be relaxed to that

1
2 + β′ fraction are reliable, and all of our analysis holds but with a new parameter β = (1− η) ·

(
1
2 + β′

)
− 1

2 , where the
parameters η ∈ [0, 1/2) and β′ ∈ (0, 1/2] are such that (1− η) ·

(
1
2 + β′

)
− 1

2 ∈ (0, 1/2].

B. Omitted Proof from Section 3.1
Proposition 19 (Restatement of Proposition 4). Consider the COMPARE-AND-LABEL algorithm, i.e. Algorithm 1. If
|S| ≥ ( 3

δ )1/1000, then with probability at least 1− δ, it correctly sorts and labels all the instances in S. The label complexity
is O

(
1
α2 · log |S| · log log |S|

)
, and the comparison complexity is given by O

(
1
β2 · |S| · log2 |S|

)
.

Proof. Recall that given any pair of instances (x, x′) ∈ X × X , if we randomly draw a worker t ∼ PC , with probability at
least 1

2 + β, the comparison tag is correct.

Let k1 be the number of workers we query for each pair of instances in Algorithm 1. The probability that the majority of the
k1 tags is incorrect on a given pair (x, x′) is

Pr
(
Z∗(x, x′) ·

k1∑
j=1

Zt(x, x
′) ≤ 0

)
,

where Zt(x, x′) is the annotation from the j-th worker.

Without loss of generality, we assume the ground truth Z∗(x, x′) = −1. It then follows that Et∼PC
[
Zt(x, x

′)
]

= −2β < 0.
By Hoeffding’s inequality, we have

Pr

( k1∑
t=1

Zt(x, x
′) ≥ k1 · Et

[
Zt(x, x

′)
]

+ t

)
≤ e−

2t2

k1·(b−a)2 , (B.1)

where a = −1 and b = 1 are the corresponding lower and upper bounds of each tag Zt(x, x′). Let t be such that
k1 · Et

[
Zt(x, x

′)
]

+ t = 0. Then

Pr

( k1∑
t=1

Zt(x, x
′) ≥ 0

)
≤ e−2k1β

2

. (B.2)

Let qS be the total number of comparisons made by algorithm RANDOMIZED QUICKSORT, and denote by (xl, x
′
l) the pair

being compared in the l-th iteration. We apply the union bound and obtain that

Pr

( qS⋃
l=1

[
Z∗(xl, x

′
l)

k1∑
t=1

Zt(xl, x
′
l) ≤ 0

])
≤

qS∑
l=1

e−2k1β
2

≤ qS · e−2k1β
2

. (B.3)

By setting

k1 =
1

2β2
· log

3qS
δ
,

we have that with probability at least δ3 , the set S is correctly sorted.

Now we upper bound the quantity qS . Recall that by Lemma 32, with probability at least 1 − 1
|S|c , we have qS ≤

(c + 2) |S| log8/7 |S|. By our requirement on the size of S, c = 1000. Thus, with probability at least 1 − δ
3 , qS ≤

1002 |S| log8/7 |S|. Thus, it suffices to set

k1 =
1

2β2
· log

3006 |S| log8/7 |S|
δ

(B.4)
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to ensure that with probability at least 1− 2
3δ, the set S is correctly sorted. It is not hard to see that the number of comparisons

is upper bounded by

k1 · qS ≤
1

2β2
· log

3006 |S| log8/7 |S|
δ

· 1002 |S| · log8/7 |S| ≤ O
( 1

β2
|S| · log2 |S|

)
. (B.5)

Likewise, for any given instance x ∈ X , let gi(x) be the label given by a randomly selected worker i ∼ PL. Recall that
gi(x) = h∗(x) with probability at least 1

2 + α. Similar to the previous analysis, by Hoeffding’s inequality and the union
bound (over the labeling of the log |S| instances), we have that

Pr

( log|S|⋃
l=1

[
h∗(xl)

k2∑
i=1

gi(xl) ≤ 0

])
≤

log|S|∑
l=1

Pr

(
h∗(xl)

k2∑
i=1

gi(xl) ≤ 0

)
≤ log |S| · e−2k2α

2

=
δ

3
,

provided that we set

k2 =
1

2α2
· log

3 log |S|
δ

. (B.6)

The total number of calls to the labeling oracle equals

k2 · log |S| = 1

2α2
· log

3 log |S|
δ

· log |S| = O
( 1

α2
· log |S| · log log |S|

)
. (B.7)

By union bound, we have that with probability at least 1− δ, S is correctly sorted and labeled, which proves the desired
result.

Theorem 20 (Restatement of Theorem 5). With probability at least 1− δ, the natural approach runs in time poly(d, 1
ε ) and

returns a classifier h with error rate errDX (h) ≤ ε. The label complexity isO
(

1
α2 ·log nε,δ ·log log nε,δ

)
and the comparison

complexity is O
(

1
β2nε,δ · log2 nε,δ

)
. Therefore, the labeling overhead ΛL = 1

α2 · Õ
( log(d/ε)

d/ε

)
and the comparison overhead

ΛC = Oδ
(

1
β2 · log2 nε,δ

)
.

Proof. We note that by (3.2), |S| = nε,δ ≥ ( 3
δ )1/1000. Thus, we can apply Proposition 19 to show that with probability

1 − δ, the set S is correctly labeled by Algorithm 1. This in allusion to Assumption 3 implies the PAC guarantee of the
natural approach.

Now we give the labeling and comparison overhead. To this end, we first note that the label and comparison complexity
inherits from Proposition 19. Thus, we have the label complexity and comparison complexity as follows:

mL = O
( 1

α2
· log nε,δ · log log nε,δ

)
=

1

α2
· Õ
(

log
d+ 1

δ

ε

)
, (B.8)

mC = O
( 1

β2
nε,δ · log2 nε,δ

)
. (B.9)

In the above expression, the Õ(·) notation hides poly-logarithmic factors of the argument.

Therefore, by mε,δ ≥ K · d+log(1/δ)
ε , we have

ΛL =
mL

mε,δ
≤ 1

α2
· Õ
( ε

d+ log(1/δ)
· log

d+ 1/δ

ε

)
=

1

α2
· Õ
( log(d/ε)

d/ε

)
, (B.10)

which goes to zero as ε goes to 0.

For the comparison overhead, we have

ΛC = O
( 1

β2
· nε,δ log2 nε,δ

mε,δ

)
= Oδ

( 1

β2
· log2 nε,δ

)
. (B.11)

To see that the algorithm runs in polynomial time, first, we recall that Algorithm 1 runs in polynomial time. In addition, the
standard PAC learner AH is assumed to run in polynomial time. The proof is complete.
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C. Analysis of Phase 1
Proposition 21 (Restatement of Prop. 13). In Phase 1, with probability 1− δ

3 , the classifier h1 is such that errDX (h1) ∈[
1
6

√
ε, 1

2

√
ε
]
. In addition, the label complexity is O

(
1
α2 · log n√ε,δ · log log n√ε,δ

)
and the comparison complexity is

O
(

1
β2 · n√ε,δ · log2 n√ε,δ

)
.

Proof. Recall that |S1| = n√ε/2,δ/6. By Proposition 19, all the instances in S1 are correctly labeled with probability

1 − δ
6 . Thus, conditioned on this event, with probability at least 1 − δ

6 , AH(S1,
√
ε

2 ,
δ
6 ) returns a classifier h′1 with

errDX (h′1) ≤ 1
2

√
ε. By union bound (over the labeling of S1 and the learner AH), we know that with probability at least

1− δ
3 , errDX (h′1) ≤ 1

2

√
ε. Observe that the classifier h′1 corresponds to the parameters η = 1

2

√
ε and c = 1

2 in Algorithm 3.
Hence, by Lemma 22, the obtained classifier h1 is such that errDX (h1) ∈

[
1
6

√
ε, 1

2

√
ε
]
.

Note that we only query workers when training h′1. Hence, by Proposition 19, the label complexity is O
(

1
α2 · log n√ε,δ ·

log
logn√ε,δ

δ

)
and the comparison complexity is O

(
1
β2 · n√ε,δ · log n√ε,δ · log

n√ε,δ
δ

)
.

Lemma 22. Consider Algorithm 3. The returned classifier h : X → Y satisfies errDX (h) ∈ [c1η, c2η], where c1 =
min

{
1
2 ,

1−c
2−c
}

and c2 = max
{

1, c+ 1
2

}
.

Proof. Denote ξ := errDX (h′). Observe that

Pr
x∼DX

(h(x) 6= h∗(x))

= Pr
x∼DX

(h(x) 6= h∗(x) | HEADS) · Pr(HEADS) + Pr
x∼DX

(h(x) 6= h∗(x) | TAILS) · Pr(TAILS)

= Pr
x∼DX

(h′(x) 6= h∗(x) | HEADS) · Pr(HEADS) + Pr
x∼DX

(−h′(x) 6= h∗(x) | TAILS) · Pr(TAILS)

= ξ · λ+ (1− ξ)(1− λ).

First, we consider that ξ < 1
2η. Note that since ξ · λ ≥ 0 and ξ < 1

2η, we have

ξ · λ+ (1− ξ)(1− λ) ≥ 0 + (1− 1

2
η)(1− λ) =

1

2
η, (C.1)

where the last step follows from our choice of λ. On the other hand, by using the fact that 0 ≤ ξ < 1
2η, we have

ξ · λ+ (1− ξ)(1− λ) ≤ 1

2
η · λ+ (1− λ) =

1

2
η
(
1−

1
2η

1− 1
2η

)
+

1
2η

1− 1
2η

= η. (C.2)

Therefore, we prove that the error rate of h falls into the range of
[

1
2η, η

]
when ξ < 1

2η.

Now, we consider that in reality, ξ ∈ [ 1
2η, η]. In this case, we have

ξ · λ+ (1− ξ)(1− λ) ≥ 0 + (1− η)(1− λ) =
1− η
2− η

· η ≥ 1− c
2− c

· η. (C.3)

On the other hand, we also have

ξ · λ+ (1− ξ)(1− λ) ≤ ηλ+ (1− 1

2
η)(1− λ) = ηλ+

1

2
η ≤ (c+

1

2
)η, (C.4)

where in the equality we use the setting of λ. Therefore, we prove that when 1
2η ≤ ξ ≤ η, we still have errD(h) ∈[

1−c
2−cη, (c+ 1

2 )η
]
.

The result follows by taking the union of the intervals obtained for the two cases of ξ.

D. Analysis of Phase 2
We will first analyze the performance of the FILTER algorithm, i.e. Algorithm 4. Then, we give a full analysis for Phase 2 of
Algorithm 2.
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Figure 1. Illustration of FILTER. Each circle represents an instance in S, where we use solid circles to indicate the instances in U ⊂ S.
We call the oracles to sort and label all the instances in U correctly. We use x− to denote the rightmost instance in U that is labeled as −1,
and use x+ to denote the leftmost instance in U that is labeled as +1. We will think of [x−, x+] as an interval, and instances outside the
interval (e.g. x1, x5) are potentially informative, since we can combine the label of x− or x+ and the comparison tag to infer their labels
(e.g. x5 is likely positive). Thus, these points will be used to test the performance of h.

D.1. Analysis of FILTER

We will frequently discuss instances outside the interval [x−, x+], which can be formally defined as follows: for the input
set S in FILTER, the perfect comparison function Z∗(·, ·) gives a full ranking of all the instances. We then map these points
to the interval [0, 1] of the real line by their order. An instance x is called outside the interval [x−, x+] if its coordinate in
the real line is less than that of x− or greater than that of x+. Note that this is for illustration purpose; in our algorithm we
have no access to Z∗(·, ·).

In the subsequent analysis, we use the notation (S, h, δ) to denote the inputs to FILTER, which corresponds to the arguments
(S2, h1, δ/12) of FILTER when invoked in Algorithm 2. We recall that |S| = Θ(nε,δ) and errDX (h) = Θ(

√
ε).

D.1.1. ANALYSIS OF SUB-SAMPLING

We first show that with high probability, U is correctly sorted and labeled. Then we will condition on this event and analyze
the remaining steps of FILTER.

Lemma 23. Consider FILTER (Algorithm 4) with input (S, h, δ). With probability 1− δ/8, Algorithm 4 correctly sorts
and labels the subset U . The label complexity of the sub-sampling step is O

(
1
α2 · log |U | · log log |U |

)
, and the comparison

complexity of the sub-sampling step is O
(

1
β2 · |U | · log2 |U |

)
.

Proof. Note that |U | = 4√
ε

log 16
δ + ( 24

δ )1/1000 ≥ ( 24
δ )1/1000. Hence, the results follow from Proposition 19.

Lemma 24. Consider Algorithm 4. Suppose that the subset U is correctly labeled. With probability at least 1− δ/8, the
interval [x−, x+] contains less than η fraction of the instances in S provided that |U | ≥ 1

η log 16
δ .

Proof. The algorithm uniformly samples a subset U ⊆ S with b instances. Without loss of generality, let x1 < x2 < · · · <
xb be the instances in U .

Denote by Ei the event that interval [xi, xi+1] contains more than a η fraction of the instances in S. Let ρ be the distance
from xi to the leftmost instance x0 (note that all the points are evenly mapped to the interval [0, 1] and hence ρ is exactly the
coordinate of xi after mapping). Let L be the set of instances that are left to xi, and R be those right to xi+1. Then, Ei
happens only if the distance of all cross-group points (i.e. for all x ∈ L and x′ ∈ R ) is at least η. In the following, we only
consider the case that ρ ∈ [0, 1− η], because otherwise the fraction of the data contained in [xi, xi+1] must be less than η.
Therefore, for any 1 ≤ i ≤ b− 1, we have

Pr
(
Ei
)
≤
∫ 1−η

0

ρi−1 ·
(
1− η − ρ

)b−i
dρ ≤ 2(1− η)

b+ 1
·
(
1− η

)b ≤ 2

b+ 1
e−bη,

where the last step follows from the inequality 1− t ≤ e−t for all t ≥ 0 and the fact that 1− η ≤ 1.

By union bound over the intervals, we have

Pr
( b−1⋃
i=1

Ei

)
≤ 2(b− 1)

b+ 1
· e−bη ≤ 2 · e−bη.

Recall that we set the parameter b ≥ 1
η log 16

δ , which implies that the above probability is upper bounded by δ/8. Namely,
the probability that the interval [x−, x+] contains less than η fraction of the instances of S is at least 1− δ/8.
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D.1.2. ANALYSIS OF THE STRUCTURE OF SI

Lemma 25 (Restatement of Lemma 14). Consider Algorithm 4. Assume that the subset U is correctly labeled and β ≥ c0
for some absolute constant c0 ∈ (0, 1/2]. Consider any given instance x ∈ S outside the interval [x−, x+]. If h(x) = h∗(x),
it will be added to SI with probability at most 1

4

√
ε; if h(x) 6= h∗(x), it goes to SI with probability at least 4c0

1+2c0
. For any

instance x ∈ S that falls into the interval [x−, x+], it will be added to SI with probability at most 1
4

√
ε.

Proof. Consider the following two events that were involved in the Filtering step of the algorithm FLITER: (At)
Maj(Z1:t(x, x

−)) = {x < x−} and h(x) = −1; (Bt) Maj(Z1:t(x, x
+)) = {x > x+} and h(x) = 1.

Case 1. The instance x is outside the interval and h(x) = h∗(x). By assumption, both x− and x+ are labeled correctly. On
the other hand, the probability that the comparison tag from a random worker t ∼ PC is correct is at least 1

2 + β. Thus, by
the Chernoff bound, the majority vote of N = 1

β2 log 16
ε comparison tags is correct with probability at least 1− 1

4

√
ε, i.e.

Maj(Z1:N (x, x−)) = Z∗(x, x−) and Maj(Z1:N (x, x+)) = Z∗(x, x+). Consider that in reality, Z∗(x, x−) = {x < x−}.
This immediately implies Maj(Z1:N (x, x−)) = {x < x−}. On the other hand, this in allusion to the comparison model in
Section 3 also implies h∗(x) = −1. Since we are considering x such that h(x) = h∗(x), we have h(x) = −1. Therefore,
the event AN occurs. Similarly, we can show that if in reality, Z∗(x, x+) = {x > x+}, then the event BN occurs. Together,
we have that either At or Bt occurs when t = N if not earlier, and hence we will set ANS to NO and such instance will not
be added to SI .

Case 2. The instance x is outside the interval and h(x) 6= h∗(x). Let Et = At ∪ Bt. We aim to show that with constant
probability, Ect , the complement of Et, occurs for all t ≤ N , hence x will be added to SI . To this end, it suffices
to show that there exists at least a time stamp t ≤ N , such that Et happens with probability at most O(1), because
Pr(∩Ect ) ≥ 1− Pr(∪Et). Observe we can rewrite At and Bt in conjunction with the condition h(x) 6= h∗(x) as follows:
(At) Maj(Z1:t(x, x

−)) = {x < x−} and h∗(x) = 1; (Bt) Maj(Z1:t(x, x
+)) = {x > x+} and h∗(x) = −1. Recall that

when either At or Bt occurs, it must be the case that the majority vote of the t workers is incorrect, where we defined the
incorrectness of a comparison tag in Section 3. It hence remains to upper bound the probability of such event. This can
essentially be formed as a biased random walk, also known as the probability of ruin in gambling (Feller, 2008): we are
given a random walk that takes a step to the right with probability 1

2 + β (corresponding to a draw of a perfect worker) and
takes a step to the left with probability 1

2 − β, and the question is how likely the walk will ever cross the origin to the left
while taking N steps. By Lemma 33, we know that such probability is given by

1−
( 1/2+β

1/2−β
)N

1−
( 1/2+β

1/2−β
)N+1

≤
1
2 − β
1
2 + β

≤ 1− 2c0
1 + 2c0

, (D.1)

provided that β ≥ c0 for some absolute constant c0 > 0. Therefore, with probability at least 4c0
1+2c0

, x will be added to SI .

Case 3. The instance x falls into the interval. Using same argument as in Case 1, we know that the majority vote of
N workers agrees with Z∗ with probability at least 1 − 1

4

√
ε. Therefore, such instance must be detected after the N -th

iteration.

We now have the following corollary regarding the size of SI .

Corollary 26. Consider Algorithm 4 with |S| = Θ(nε,δ). Assume that the subset U is correctly labeled and β ≥ c0 for
some absolute constant c0 ∈ (0, 1/2]. With probability at least 1− δ/4, |SI | = Θ(

√
ε |S|).

Proof. For any x ∈ S, let rx be a random variable that takes value 0 if x was not added to SI and takes value 1 otherwise.

Consider any instance x ∈ S that is outside the interval [x−, x+]. By Lemma 25, we have

Pr(rx = 1) = Pr(rx = 1 | h(x) = h∗(x)) · Pr(h(x) = h∗(x))

+ Pr(rx = 1 | h(x) 6= h∗(x)) · Pr(h(x) 6= h∗(x))

≤ 1

4

√
ε · 1 + 1 · 1

2

√
ε ≤
√
ε.
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On the other hand, it is not hard to see that

Pr(rx = 1) ≥ 0 +
4c0

1 + 2c0
· 1

6

√
ε = Θ(

√
ε).

Therefore, by the Chernoff bound, with probability 1− eΘ(−
√
ε|S|), we have |SI | = Θ(

√
ε(|S| − |Sin|) +M), where M

denotes the number of instances we added from U ∪ Sin. Now by Lemma 24 and our setting with |U | ≥ 4√
ε

log 16
δ , we

have 0 ≤ |Sin| ≤ 1
4

√
ε |S| ≤ 1

4 |S| with probability at least 1− δ
8 . In addition, 0 ≤M ≤ |U |+ |Sin| = Θ(

√
ε |S|). These

together with |S| ≥ Ω( 1
ε log 8

δ ) implies that with probability 1− δ/4, |SI | = Θ(
√
ε |S|).

D.1.3. PERFORMANCE GUARANTEE OF FILTER

A naive worst-case analysis would give query complexity bound of O(|S|N). In the following, we show an improved result.
The proof follows closely from Awasthi et al. (2017b), where the new ingredient is that we need to examine the instances
within and outside the interval respectively. This is where Lemma 24 plays a role in controlling the overall query complexity.

Proposition 27 (Restatement of Prop. 15). Consider the FILTER algorithm with |S| = Θ(nε,δ). Assume that β ≥ c0
for some absolute constant c0 ∈ (0, 1/2]. Then, with probability at least 1 − δ, the algorithm returns an instance set
SI with size Θ(n√ε,δ). The label complexity is O

(
1
α2 · log n√ε,δ · log log n√ε,δ

)
, and the comparison complexity is

O
(
n√ε,δ · log2 n√ε,δ + nε,δ

)
.

Proof. First, by Lemma 23 and Lemma 24 (and the setting of |U |), with probability 1 − δ/3, the sub-sampling step
identifies x− and x+ such that: 1) x− is negative and x+ is positive; and 2) the interval [x−, x+] contains less than
1
4

√
ε |S| instances. In addition, since |U | ≤ O(n√ε,δ), the label complexity and comparison complexity of sub-sampling are

O
(

1
α2 · log n√ε,δ · log log n√ε,δ

)
and O

(
1
β2n√ε,δ · log2 n√ε,δ

)
respectively.

We condition on these happening and consider comparison complexity for three (overlapping) cases for x ∈ S: it falls into
the interval [x−, x+], it is such that h(x) 6= h∗(x), it is such that h(x) = h∗(x).

Case 1. For the instances inside the interval, the total number of comparison queries on these points is upper bounded by
1
4

√
ε |S|N .

Case 2. Since the error rate of h is Θ(
√
ε), we know that with probability at least 1− e−

√
ε|S| ≥ 1− δ/8, the number of

instances in S on which h disagrees with h∗ is Θ(
√
ε |S|). Hence, the total number of comparison queries is Θ(

√
ε |S|N).

Case 3. Lastly, we consider x ∈ S such that h(x) = h∗(x). Let Ni be the expected number of queries we need until having
i more correct comparison tags than the incorrect ones. Then,

N1 ≤
(1

2
+ β

)
· 1 +

(1

2
− β

)
(N2 + 1). (D.2)

This is because with probability at least 1
2 + β, we obtain a correct comparison tag and stop, and with probability at most

1
2 − β, we get an incorrect tag and in the future, we must query the workers until we see 2 more correct tags than incorrect
ones. On the other hand, it is not hard to see that N2 = 2N1, since in order to reach the status of N2, we just repeat the
process of getting N1 twice. This combined with (D.2) implies that

N1 ≤
1

2β
≤ 1

2c0

as long as β ≥ c0. Now using the Bernstein’s inequality (see e.g. Appendix D of Awasthi et al. (2017b)), we know that with
probability at least 1− e−|S| ≥ 1− δ/8, the total number of comparison queries on all x with h(x) = h∗(x) is O(|S|).

Combining all three cases and the fact that |S| = Θ(nε,δ) and N = 1
β2 log 1

ε , we have that with probability 1− δ/4, the
comparison complexity of the “for x ∈ S\U” loop is

1

4

√
ε |S|N + Θ(

√
ε |S|N) +O(|S|) ≤ O(|S|) = O(nε,δ). (D.3)
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To see why the inequality holds, note that
√
ε log 1

ε ≤ O(1) and β ≥ Ω(1), hence
√
εN =

√
ε · 1

β2 log 1
ε ≤ O(1). Next, the

algorithm invokes COMPARE-AND-LABEL on Sin whose size is upper bounded by
√
ε |S| = O(n√ε,δ) in view of Lemma 24.

Therefore, by Proposition 19, the label complexity and comparison of this step is O
(

1
α2 · log n√ε,δ · log log n√ε,δ

)
and

O
(

1
β2 ·n√ε,δ · log2 n√ε,δ

)
respectively. These, in conjunction with the label and comparison complexity of the sub-sampling

step gives the announced results.

D.2. Performance guarantee of Phase 2

We now switch to the notation in Algorithm 2.

Lemma 28 (Lemma 4.7 in Awasthi et al. (2017b)). With probability 1− δ/12, W I and WC both have size Θ(n√ε,δ).

Proposition 29 (Restatement of Prop. 16). Assume that β ≥ c0 for some absolute constant c0 ∈ (0, 1/2]. In Phase 2,
with probability 1− δ

3 , errD2
(h2) ≤ 1

2

√
ε. The label complexity is O

(
1
α2 · log n√ε,δ · log log n√ε,δ

)
, and the comparison

complexity is O
(
n√ε,δ · log2 n√ε,δ + nε,δ

)
.

Proof. To see the query complexity in Phase 2, observe that we query the workers when invoking FILTER to obtain SI , and
when invoking COMPARE-AND-LABEL to obtain SAll where

∣∣SAll
∣∣ = Θ(n√ε,δ). Therefore, with probability 1− δ/6, we

obtain the announced query complexity in view of Proposition 27 and Proposition 19.

It remains to show that h2 achieves error rate 1
2

√
ε on the target distribution D2. Let d(x), dC(x) and dI(x) be the density

functions of D, DC and DI respectively. Since the error rate of h1 is Θ(
√
ε) (see Proposition 21), we have that for any x

with h1(x) = h∗(x), d(x) = dC(x) · (1−Θ(
√
ε)); for any x with h1(x) 6= h∗(x), d(x) = dI(x) ·Θ(

√
ε).

Let NC(x), NI(x), MC(x) and MI(x) be the number of occurrences of x in the sets SC , SI , WC and WI , respectively.
Let d′(x) be the density function of the distribution D′ underlying the empirical distribution of 1

2WI + 1
2WC .

We condition on Lemma 28, which occurs with probability 1− δ/12.

Case 1. x is such that h1(x) = h∗(x). We have

d′(x) =
1

2
E

[
MC(x)∣∣WC

∣∣
]
ζ1
≥ E[MC(x)]

Θ(n√ε,δ)

ζ2
≥ E[NC(x)]

Θ(n√ε,δ)
=
|SC | · d(x)

Θ(n√ε,δ)

=
Θ(n√ε,δ) · dC(x) · (1−Θ(

√
ε))

Θ(n√ε,δ)
≥ Θ(dC(x)) = Θ(d2(x)).

In the above expression, ζ1 follows from Lemma 28, ζ2 holds since WC was obtained in such a way that the majority vote
has high probability to be correct while SC was just drawn from DX , and the last step simply follows from the fact that D2

is an equally weighted mixture of DC and DI .

Case 2. x is such that h1(x) 6= h∗(x). Similar to the first case, we can show that

d′(x) =
1

2
E

[
MI(x)∣∣WI

∣∣
]

=
E[MI(x)]

Θ(n√ε,δ)
≥ E[NI(x)]

Θ(n√ε,δ)
≥

4c0
1+2c0

|S2| d(x)

Θ(n√ε,δ)

=
4c0

1+2c0
|S2| dI(x)Θ(

√
ε)

Θ(n√ε,δ)
=

Θ(n√ε,δ) · dI(x)

Θ(n√ε,δ)
= Θ(dI(x)) = Θ(d2(x)).

Now by the super-sampling lemma (Lemma 4.2 in Awasthi et al. (2017b)), we know that the obtained h2 is such that with
probability at least 1− δ

12 , errD2
(h2) ≤ 1

2

√
ε. The desired success probability of 1− δ/3 follows by considering the union

bound of all the events.

E. Analysis of Phase 3
Proposition 30 (Restatement of Prop. 17). In Phase 3, with probability 1− δ

3 , errD3
(h3) ≤ 1

2

√
ε. In addition, the label

complexity is O
(

1
α2 · log n√ε,δ · log log n√ε,δ

)
and the comparison complexity is O

(
1
β2 · n√ε,δ · log2 n√ε,δ

)
.
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Proof. Similar to the proof of Proposition 21, in Phase 3, all instances in S3 are correctly labeled with probability at least 1− δ6 .
The label complexity is O

(
1
α2 · log n√ε,δ · log log n√ε,δ

)
and the comparison complexity is O

(
1
β2 · n√ε,δ · log2 n√ε,δ

)
. We

condition on this happening. Then with probability 1− δ
6 , the base PAC learnerAH returns a classifier with error rate≤ 1

2

√
ε

in view of Assumption 3. By union bound, with probability at least 1− δ
3 , the error rate of h3 is errD3(h3) ≤ 1

2

√
ε.

F. Proof of Theorem 8
Proof. By Proposition 21, Proposition 29, and Proposition 30, we have that with probability at least 1 − δ, the error
guarantees errDX (h1) ≤ 1

2

√
ε, errD2(h2) ≤ 1

2

√
ε and errD3(h3) ≤ 1

2

√
ε hold simultaneously. Therefore, by Theorem 7, it

follows that the classifier ĥ := Maj(h1, h2, h3) is such that errD(ĥ) ≤ 3
4ε ≤ ε with probability at least 1− δ.

Note that each phase of Algorithm 2 runs in polynomial time. In particular, the COMPARE-AND-LABEL algorithm runs in
polynomial time because its core component is RANDOMIZED QUICKSORT which runs in polynomial time. The FILTER
algorithm runs in polynomial time because the sub-sampling step is efficient and the number of iterations for filtering is
N = 1

β2 log 1
ε . Last, the base learner AH is assumed to be efficient.

Finally, we consider the query complexity of the main algorithm. By Propositions 21, 29 and 30, the overall label complexity
is given by

mL = O
( 1

α2
· log n√ε,δ · log log n√ε,δ

)
=

1

α2
· Õ
(

log
d+ 1

δ

ε

)
, (F.1)

and the overall comparison complexity, under the assumption β ≥ c0, is given by

mC = O
(
n√ε,δ · log2 n√ε,δ + nε,δ

)
= Õ

(d+ (1/δ)
1

1000

√
ε

)
+O

(1

ε

(
d log

1

ε
+
(1

δ

) 1
1000

))
= Õ

(d+ (1/δ)
1

1000

ε

)
. (F.2)

These in allusion to mε,δ = K ·
(

1
ε (d log(1/ε) + log(1/δ)

)
≥ Ω

(
1
ε (d + log(1/δ)

)
immediately give the overheads as

follows:

ΛL = O
( 1

α2
·

log n√ε,δ
mε,δ

· log log n√ε,δ

)
≤ 1

α2
· ε

d+ log(1/δ)
· Õ
(

log
d+ 1

δ

ε

)
=

1

α2
· ε
d
· Õ
(

log
d

ε

)
, (F.3)

and

ΛC = O
(n√ε,δ
mε,δ

· log2 n√ε,δ +
nε,δ
mε,δ

)
≤ O

(√
ε · d+ (1/δ)

1
1000

d+ log(1/δ)
· log2

(d+ 1/δ

ε

)
+
d+ (1/δ)

1
1000

d+ log(1/δ)

)
. (F.4)

Recall that by the definition of nε,δ and mε,δ in Section 3, we have mε,δ = Θ(nε,δ) = Θ(dε log 1
ε ) when δ is a constant

(note that assuming δ as a constant only simplifies our discussion). In this case, we can see that

ΛC ≤ Oδ
(√

ε · log2 d

ε
+ 1
)
.

The theorem is proved.

Remark 31. Observe that the denominator we use in the analysis, i.e. Ω
(
d
ε

)
, is the query complexity lower bound of a

PAC learner that uses only labels, thus highlighting the saving of labels with access to the comparison queries. On the
other side, if we were to compare our query complexity to the lower bound of a comparison-equipped algorithm in the
non-crowdsourcing setting, we can combine Theorem 4.11 and Corollary 4.12 of (Kane et al., 2017) to get a (probably
loose) lower bound Ω(d+ 1

ε ). With this bound, it is easy to see that now Eq. (F.3) and Eq. (F.4) become

(F.3’) ΛL ≤
1

α2
· 1

d+ 1/ε
· Õδ(log

d

ε
),

(F.4’) ΛC ≤ O
( 1√

ε
(d+ (1/δ)

1
1000 )

d+ 1/ε
· log2 d+ 1/δ

ε
+

1
ε (d+ (1/δ)

1
1000 )

d+ 1/ε

)
= Oδ

( d/
√
ε

d+ 1/ε
· log2 d

ε
+

d/ε

d+ 1/ε

)
.

When ε → 0, we have ΛL = oδ(1) and for fixed d, ΛC = Oδ(1). Hence, the performance guarantees we highlighted in
Remark 10 still hold for fixed d, as we mentioned in Remark 12.
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G. Useful Lemmas
We record some standard results in this section.

Lemma 32 (High-probability bound for RANDOMIZED QUICKSORT). With probability at least 1− 1/mc for any constant
c > 1, the following holds. Given an instance set S with m elements, the comparison complexity of sorting all the elements
by RANDOMIZED QUICKSORT is (c+ 2)m log8/7m.

Proof. QUICKSORT is a recursive algorithm: in each round, it picks a pivot, splits the problem into two subsets, and
recursively calls itself on each subset. The program keeps doing this until all the recursive calls contain at most one element.
We consider RANDOMIZED QUICKSORT in our algorithm. Note that RANDOMIZED QUICKSORT differs from QUICKSORT
only in the way it picks the pivots: in each round, it picks a random element in set S.

Consider a special element t ∈ S. Let Li be the size of input in the ith level of recursion that contains t. Obviously L0 = m,
and we have

E[Li|Li−1] <
1

2
· 3

4
Li−1 +

1

2
Li−1 ≤

7

8
Xi−1,

because with probability 1
2 , the pivot ranks between 1

4Li−1 and 3
4Li−1; and with probability 1

2 , the size of the subset does
not shrink significantly. By the tower rule E[X] = E[E[X | Y ]], it follows that

E[Li] = Ey[Li|Li−1 = y] ≤ ELi−1=y

[
7

8
y

]
=

7

8
E
[
Li−1

]
≤
(

7

8

)i
E[L0] =

(
7

8

)i
m.

Let M = (c+ 2) · log8/7m for some constant c > 0. Then, the above inequality gives

E[LM ] ≤
(

7

8

)M
·m ≤ 1

mc+2
·m =

1

mc+1
.

Applying Markov’s inequality, we have

Pr[LM ≥ 1] ≤ E[LM ]

1
≤ 1

mc+1
,

which denotes the probability that element t participates in more than M recursive calls. Taking a union bound over all m
elements, the probability that any element participates in more than M recursive calls is at most

(
1/mc+1

)
·m = 1/mc. In

other words, with probability at least 1− 1/mc, the total number of pairwise comparisons performed is upper bounded by
m ·M = (c+ 2)m log8/7m.

Lemma 33 (Probability of Ruin (Feller, 2008)). Consider a player who starts with i dollars against an adversary that has
N dollars. The player bets one dollar in each gamble, which he wins with probability p. The probability that the player ends
up with no money at any point in the game is

1−
(

p
1−p

)N
1−

(
p

1−p

)N+i
.

Lemma 34 (Chernoff bound). Let Z1, Z2, . . . , Zn be n independent random variables that take value in {0, 1}. Let
Z =

∑n
i=1 Zi. For each Zi, suppose that Pr(Zi = 1) ≤ η. Then for any α ∈ [0, 1]

Pr (Z ≥ (1 + α)ηn) ≤ e−
α2ηn

3 .

When Pr(Zi = 1) ≥ η, for any α ∈ [0, 1]

Pr (Z ≤ (1− α)ηn) ≤ e−
α2ηn

2 .

The above two probability inequalities hold when η equals exactly Pr(Zi = 1).


